Уровень коммерческих потерь в электрических сетях. Возможности снижения потерь в электрических сетях

При передаче электрической энергии в каждом элементе электрической сети возникают потери. Для изучения составляющих потерь в различных элементах сети и оценки необходимости проведения того или иного мероприятия, направленного на снижение потерь, выполняется анализ структуры потерь электроэнергии.

Фактические (отчетные) потери электроэнергии определяют как разность электроэнергии, отпущенной в электрическую сеть и полезно отпущенной потребителям. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами ее учета и, наконец, хищения электроэнергии, неоплату или неполную оплату показаний счетчиков и т.п.

Фактические потери могут быть разделены на четыре составляющих:

– технические потери электроэнергии , складываются при передаче электроэнергии по электрическим сетям, обусловленные физическими процессами в проводах, кабелях и электрооборудовании;

– объем электроэнергии затраченный на собственные нужды подстанций , необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала, определяемый по показаниям счетчиков, установленных на ТСН;

– потери электроэнергии, обусловленные погрешностями их измерения (инструментальные потери) ;

– коммерческие потери , обусловленные хищениями электроэнергии, вмешательством в схему подключения, воздействием на приборы учета магнитом, несоответствием показаний счетчиков оплате за электроэнергию бытовыми потребителями и другими причинами в сфере организации контроля за потреблением энергии. Их значение определяют как разницу между фактическими (отчетными) потерями и суммой первых трех составляющих:

Три первые составляющие структуры потерь обусловлены технологическими потребностями процесса передачи электроэнергии по сетям и инструментального учета ее поступления и отпуска. Сумма этих составляющих хорошо описывается термином технологические потери. Четвертая составляющая - коммерческие потери - представляет собой воздействие "человеческого фактора" и включает в себя все его проявления: сознательные хищения электроэнергии некоторыми абонентами с помощью изменения показаний счетчиков, неоплату или неполную оплату показаний счетчиков и т.п..

Критерии отнесения части электроэнергии к потерям могут быть физического и экономического характера .

Сумму технических потерь, расхода электроэнергии на собственные нужды подстанций и коммерческих потерь можно назвать физическими потерями электроэнергии. Эти составляющие действительно связаны с физикой распределения энергии по сети. При этом первые две составляющие физических потерь относятся к технологии передачи электроэнергии по сетям, а третья - к технологии контроля количества переданной электроэнергии.

Экономика определяет потери как разность между отпуском в сеть и полезным отпуском по потребителям. Следует учесть, что полезный отпуск - не только та часть электроэнергии, которая было оплачена, но и та, за которую был выставлен счет энергосбытовой компании. В случае если потребление абонента не было зафиксировано в текущем расчетном периоде (обход, оплата, АИП и.т.д.) то начисление будет произведено по среднемесячному потреблению.

С точки зрения экономики расход электроэнергии на собственные нужды подстанций ничем не отличается от расхода в элементах сетей на передачу остальной части электроэнергии потребителям.

Недоучет объемов полезно отпущенной электроэнергии является такой же экономической потерей, как и две описанные выше составляющие. То же самое можно сказать и о хищениях электроэнергии. Таким образом, все четыре описанные выше составляющие потерь с экономической точки зрения одинаковы.

Технические потери электроэнергии можно представить следующими структурными составляющими:

– потери холостого хода, включающие потери в электроэнергии в силовых трансформаторах, компенсирующих устройствах (КУ), трансформаторах напряжения, счетчиках и устройствах присоединения ВЧ-связи, а также потери в изоляции кабельных линий;

– нагрузочные потери в оборудовании подстанций. К ним относятся потери в линиях и силовых трансформаторах, а также потери в измерительных комплексах электрической энергии,

– климатические потери, включающие в себя два вида потерь: потери на корону и потери из-за токов утечки по изоляторам ВЛ и подстанций. Оба вида зависят от погодных условий.

Технические потери в электрических сетях энергоснабжающих организаций (энергосистем) должны рассчитываться по трем диапазонам напряжения :

– в питающих сетях напряжения 35 кВ и выше;

– в распределительных сетях среднего напряжения 6 - 10 кВ;

– в распределительных сетях низкого напряжения 0,38 кВ.

Распределительные сети 0,38 - 6 - 10 кВ, эксплуатируемые районом электирических сетей (РЭС), характеризуются значительной долей потерь электроэнергии. Это связано с особенностями протяженности, построения, функционирования, организацией эксплуатации данного вида сетей: большим количеством элементов, разветвленностью схем, недостаточной обеспеченностью приборами учета соответствующего класса и т.п.

В настоящее время по каждому РЭС энергосистем технические потери в сетях 0,38 - 6 - 10 кВ рассчитываются ежемесячно и суммируются за год. Полученные значения потерь используются для расчета планируемого норматива потерь электроэнергии на следующий год.


Передача электроэнергии по проводам в электрических системах связана с потерями активной и реактивной мощностей и энергии. Потери электроэнергии, связанные с её передачей и распределением, складываются из двух основных составляющих - потерь электроэнергии в линиях электропередач, генераторах, трансформаторах и других элементах электрической системы и так называемых коммерческих (нетехнических) потерь, вызванных несовершенством систем учёта и контроля использования электроэнергии .

Фактическими (отчётными) потерями электроэнергии называют разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям, определяемую по данным системы учёта поступления и полезного отпуска электроэнергии. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами её учёта и, наконец, хищения электроэнергии путем воздействия на счётчики, неуплаты или неполной оплаты показаний счётчиков и т. п.

Разделение потерь электроэнергии может выполняться по различным категориям: по характеру потерь (постоянные, переменные), классам напряжений, группам элементов, производственным подразделениям и т. п. Для целей нормирования потерь целесообразно использовать укрупненную структуру потерь электроэнергии, в которой они разделены на составляющие, исходя из их физической природы и специфики методов определения их количественных значений. На основе такого подхода фактические потери могут быть разделены на четыре составляющие :

  • технические потери электроэнергии , обусловленные физическими процессами в проводах и электрооборудовании, происходящими при передаче электроэнергии по электрическим сетям и выражающимися в преобразовании части электроэнергии в тепло в элементах сетей. Технические потери не могут быть измерены. Их значения можно получить только расчётным путем на основе известных законов электротехники;
  • расход электроэнергии на собственные нужды подстанций , необходимый для обеспечения работы технологического оборудования подстанций и жизнедеятельности обслуживающего персонала, определяемый по показаниям счётчиков, установленных на трансформаторах собственных нужд подстанций 35 кВ и выше;
  • потери электроэнергии, обусловленные инструментальными погрешностями её измерения (инструментальные потери) - недоучёт электроэнергии, обусловленный техническими (метрологическими) характеристиками и режимами работы приборов, используемых для измерения энергии на объекте (трансформаторов тока и напряжения самих электросчётчиков). Эти потери получают расчётным путем; в расчёт метрологических потерь включают все приборы учёта отпуска электроэнергии из сети, в том числе и приборы учёта расхода электроэнергии на собственные нужды подстанций;
  • коммерческие потери состоят из потерь, обусловленных хищениями электроэнергии, несоответствием показаний счётчиков оплате электроэнергии и другими причинами в сфере организации контроля за потреблением энергии. Коммерческие потери не имеют самостоятельного математического описания и, следовательно, не могут быть рассчитаны автономно. Их значение определяют как разницу между фактическими (отчётными) потерями и суммой первых трех составляющих.

Отметим, что определять структуру потерь нас заставляет не наука (для научных исследований все подходы имеют смысл), а экономика. Поэтому для анализа отчётных потерь следует применять экономические критерии . С позиций экономики потери - это та часть электроэнергии, на которую зарегистрированный полезный отпуск потребителям оказался меньше электроэнергии, полученной сетью от производителей электроэнергии. Под полезным отпуском электроэнергии понимается не только та электроэнергия, денежные средства за которую действительно поступили на расчётный счёт энергоснабжающей организации, но и та, на которую выставлены счета, т. е. когда потребление энергии зафиксировано. Выставление счетов является практикой, применяемой к юридическим лицам, потребление энергии которыми фиксируется ежемесячно. В отличие от этого ежемесячные показания счётчиков, фиксирующих потребление энергии бытовыми абонентами, обычно неизвестны. Полезный отпуск электроэнергии бытовым абонентам определяют по поступившей за месяц оплате, поэтому вся неоплаченная энергия автоматически попадает в потери.

Баланс электроэнергии можно представить следующим образом:

где Wp - отпущенная в сеть электроэнергия; W no - полезно отпущенная потребителям электроэнергия; AW TexH - технические потери электроэнергии; AW CM - часть энергии, израсходованной на производственные и собственные нужды энергосистем; 5 W K0M - коммерческие потери электроэнергии.

Технические потери энергии принято подразделять на нагрузочные и потери холостого хода. К потерям холостого хода относятся постоянные (условно-постоянные) потери холостого хода электрооборудования, корона линий электропередачи и т. и. Они незначительно изменяются при изменении нагрузки элемента. Нагрузочные потери - это часть потерь, которая зависит от нагрузки элемента.

Согласно данным в 2005 г. уровень потерь в электрических сетях в России составлял 13,15 % от отпуска в сеть, на 2011 год этот показатель снизился до 8,7 % . Данная величина характеризует эффективность функционирования и техническое состояние сетей, поэтому интересно сравнить её с показателями других стран, представленными на рис. 1.1 . Наименьшими потерями 4,1-5,5 % характеризуются Нидерланды, Германия, Финляндия, Южная Корея, Япония и США, что является следствием технических решений и целенаправленной политики.

Как показывает отечественный и зарубежный опыт, кризисные явления в целом и в энергетике в частности отрицательным образом влияют на потери в электрических сетях , которые в ряде стран (рис. 1.1) превышают 20 %. Низкий уровень жизни - следствие невысокого уровня развития экономики и соответственно отсутствия средств, необходимых для наведения порядка. Нет средств на установку современных приборов учёта. Нет средств на достойную оплату труда инспекторов энергосбыта, недостаточно инвестиций в сетевую инфраструктуру. Есть понятные мотивы населения, крайне стесненного в материальных средствах, попытаться сэкономить на плате за электроэнергию. В Калмыкии, например, потери превышают 30 %, на Сахалине потери составляют более 30 % .


Рис. 1.1.

По мнению международных экспертов, относительные потери электроэнергии при её передаче и распределении считаются удовлетворительными (оптимальными), если они не превышают 4-5 % . В международной практике принято считать, что если потери электроэнергии в магистральных и распределительных сетях в сумме превышают 8-9 %, то такая передача и распределение электроэнергии является нерентабельной из-за дополнительного расхода миллионов тонн топлива на компенсацию потерь электроэнергии, повышенных розничных тарифов, повышенных цен на промышленную и сельскохозяйственную продукцию, а также из-за дополнительной нагрузки на сети, снижения качества электроэнергии по напряжению и т. д. . Потери на уровне 10 % можно считать максимально допустимыми с позиций физики процесса передачи электроэнергии по сетям для большинства стран с развитой экономикой .

ПОТЕРИ ЭЛЕКТРОЭНЕРГИИ

электрич. энергия, расходуемая в элементах электрической системы на нагрев токопроводящих частей, коронный разряд в ЛЭП, на намагничивание и нагрев сердечников трансформаторов, статоров и роторов электрич. машин, а также поглощаемая в диэлектриках кабелей и конденсаторов.


Большой энциклопедический политехнический словарь . 2004 .

Смотреть что такое "ПОТЕРИ ЭЛЕКТРОЭНЕРГИИ" в других словарях:

    потери электроэнергии - Разница между объемом электроэнергии, которая поступила в электрическую сеть и объемом электроэнергии, который был отпущен из этой электросети. Тематики электроснабжение в целомэлектротехника, основные… … Справочник технического переводчика

    Потери электроэнергии в главных трансформаторах электростанций - определяются, как правило, расчетным путем: постоянные потери – с использованием технических данных трансформаторов и продолжительности их работы (в часах); переменные потери – на основе фактического графика нагрузки трансформаторов. Допускается… …

    Потери электроэнергии в электрических сетях - от границы балансовой принадлежности до места установки расчетных приборов учета относятся на владельца сети. Порядок определения и величина потерь устанавливается в договоре энергоснабжения. Методические рекомендации по регулированию отношений… … Коммерческая электроэнергетика. Словарь-справочник

    Технологические потери электроэнергии при ее передаче по электрическим сетям - 3. Технологические потери электроэнергии (далее ТПЭ) при ее передаче по электрическим сетям ТСО, ФСК и МСК включают в себя технические потери в линиях и оборудовании электрических сетей, обусловленных физическими процессами, происходящими при… … Официальная терминология

    Нормативные потери электроэнергии - величина технических потерь с учетом погрешности систем измерения электроэнергии. Источник: РД 153 34.3 09.166 00: Типовая программа проведения энергетических обследований подразделений электрич …

    Технические потери электроэнергии - технологический расход электроэнергии на ее транспорт по электрическим сетям, определяемый расчетным путем. Источник: РД 153 34.3 09.166 00: Типовая программа проведения энергетических обследова … Словарь-справочник терминов нормативно-технической документации

    Разность между отчетными и техническими потерями. Источник: РД 153 34.3 09.166 00: Типовая программа проведения энергетических обследований подразделений электрических сетей АО энерго … Словарь-справочник терминов нормативно-технической документации

    Отчетные потери электроэнергии - разность между электроэнергией, поступившей в сеть и отпущенной из сети ПЭС за отчетный период в соответствии с формами отчетности 46 ЭС и 5 энерго. Источник: РД 153 34.3 09.166 00: Типовая програм … Словарь-справочник терминов нормативно-технической документации

    Фактические (отчетные) потери электроэнергии - разность между поступлением (поставкой) электрической энергии в электрическую сеть и отпуском электрической энергии из сети, а также объемом электрической энергии, потребленной энергопринимающими устройствами и субъектами... Источник: Приказ… … Официальная терминология

    Коммерческие потери электроэнергии - – потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате за электроэнергию бытовыми потребителями и другими причинами в сфере организации контроля потребления энергии. К коммерческим относят потери… … Коммерческая электроэнергетика. Словарь-справочник

Книги

  • Потери электроэнергии. Реактивная мощность. Качество электроэнергии. Руководство , Железко Юрий Станиславович , Рассматриваются принципиальные вопросы в области планирования и управления режимами электрических сетей: потери электроэнергии, компенсация реактивной мощности, качество… Категория: Энергетика Издатель: НЦ ЭНАС ,
  • Потери электроэнергии. Реактивная мощность. Качество электроэнергии. Руководство для практических расчетов , Железко Юрий Станиславович , Рассматриваются принципиальные вопросы в области планирования и управления режимами электрических сетей: потери электроэнергии, компенсация реактивной мощности, качество электроэнергии.… Категория: Научная и техническая литература Издатель:

Потерями в электросетях считают разность между переданной электроэнергией от производителя до учтенной потребленной электроэнергией потребителя. Потери происходят на ЛЭП, в силовых трансформаторах, за счет вихревых токов при потреблении приборов с реактивной нагрузкой, а также из-за плохой изоляции проводников и хищения неучтенного электричества. В этой статье мы постараемся подробно рассказать о том, какие бывают потери электроэнергии в электрических сетях, а также рассмотрим мероприятия по их снижению.

Расстояние от электростанции к поставляющим организациям

Учет и оплата всех видов потерь регулируется законодательным актом: «Постановление Правительства РФ от 27.12.2004 N 861 (ред. от 22.02.2016) «Об утверждении Правил недискриминационного доступа к услугам по передаче электрической энергии и оказания этих услуг…» п. VI. Порядок определения потерь в электрических сетях и оплаты этих потерь. Если вы хотите разобраться с тем, кто должен оплачивать часть утраченной энергии, рекомендуем изучить данный акт.

При передаче электроэнергии на большие расстояния от производителя до поставщика ее к потребителю теряется часть энергии по многим причинам, одна из которых — напряжение, потребляемое обычными потребителями (оно составляет 220 или 380 В). Если производить транспортировку такого напряжения от генераторов электростанций напрямую, то необходимо проложить электросети с диаметром провода, который обеспечит всех необходимым током при указанных параметрах. Провода будут очень толстыми. Их невозможно будет подвесить на линиях электропередач, из-за большого веса, прокладка в земле тоже обойдется недешево.

Более подробно узнать о том, вы можете в нашей статье!

Для исключения этого фактора в распределительных сетях применяют высоковольтные линии электропередач. Простая формула расчета такова: P=I*U. Мощность равна произведению тока на напряжение.

Мощность потребления, Вт Напряжение, В Ток, А
100 000 220 454,55
100 000 10 000 10

Повышая напряжение при передаче электроэнергии в электрических сетях можно существенно снизить ток, что позволит обойтись проводами с намного меньшим диаметром. Подводный камень данного преобразования заключается в том, что в трансформаторах есть потери, которые кто-то должен оплатить. Передавая электроэнергию с таким напряжением, она существенно теряется и от плохого контакта проводников, которые со временем увеличивают свое сопротивление. Возрастают потери при повышении влажности воздуха – увеличивается ток утечки на изоляторах и на корону. Также увеличиваются потери в кабельных линиях при снижении параметров изоляции проводов.

Передал поставщик энергию в поставляющую организацию. Та в свою очередь должна привести параметры в нужные показатели: преобразовать полученную продукцию в напряжение 6-10 кВ, развести кабельными линиями по пунктам, после чего снова преобразовать в напряжение 0,4 кВ. Снова возникают потери на трансформацию при работе трансформаторов 6-10 кВ и 0,4 кВ. Бытовому потребителю доставляется электроэнергия в нужном напряжении – 380 В или 220В. Любой трансформатор имеет свой КПД и рассчитан на определенную нагрузку. Если мощность потребления больше или меньше расчетной мощности, потери в электрических сетях возрастают независимо от желания поставщика.

Следующим подводным камнем всплывает несоответствие мощности трансформатора, преобразующего 6-10 кВ в 220В. Если потребители берут энергии больше паспортной мощности трансформатора, он или выходит из строя, или не сможет обеспечить необходимые параметры на выходе. В результате снижения напряжения сети электроприборы работают с нарушением паспортного режима и, как следствие, увеличивают потребление.

Мероприятия по снижению технических потерь электроэнергии в системах электроснабжения подробно рассмотрены на видео:

Домашние условия

Потребитель получил свои 220/380 В на счетчике. Теперь потерянная после счетчика электрическая энергия ложится на конечного потребителя.

Она складывается из:

  1. Потерь на при превышении расчетных параметров потребления.
  2. Плохой контакт в приборах коммутации (рубильники, пускатели, выключатели, патроны для ламп, вилки, розетки).
  3. Емкостной характер нагрузки.
  4. Индуктивный характер нагрузки.
  5. Использование устаревших систем освещения, холодильников и другой старой техники.

Рассмотрим мероприятия по снижению потерь электроэнергии в домах и квартирах.

П.1 - борьба с таким видом потерь одна: применение проводников соответствующих нагрузке. В существующих сетях необходимо следить за соответствием параметров проводов и потребляемой мощностью. В случае невозможности откорректировать эти параметры и ввести в норму, следует мириться с тем, что энергия теряется на нагрев проводов, в результате чего изменяются параметры их изоляции и повышается вероятность возникновения пожара в помещении. О том, мы рассказывали в соответствующей статье.

П.2 - плохой контакт: в рубильниках - это использование современных конструкций с хорошими неокисляющимися контактами. Любой окисел увеличивает сопротивление. В пускателях - тот же способ. Выключатели - система включения-выключения должна использовать металл, хорошо выдерживающий действие влаги, повышенных температур. Контакт должен быть обеспечен хорошим прижатием одного полюса к другому.

П.3, П.4 - реактивная нагрузка. Все электроприборы, которые не относятся к лампам накаливания, электроплитам старого образца имеют реактивную составляющую потребления электроэнергии. Любая индуктивность при подаче на нее напряжения сопротивляется прохождению по ней тока за счет возникающей магнитной индукции. Через время электромагнитная индукция, которая препятствовала прохождению тока, помогает его прохождению и добавляет в сеть часть энергии, которая является вредной для общих сетей. Возникают так называемые вихревые токи, которые искажают истинные показания электросчетчиков и вносят отрицательные изменения в параметры поставляемой электроэнергии. То же происходит и при емкостной нагрузке. Возникающие вихревые токи портят параметры поставленной потребителю электроэнергии. Борьба - использование специальных компенсаторов реактивной энергии, в зависимости от параметров нагрузки.

П.5. Использование устаревших систем освещения (лампочки накаливания). Их КПД имеет максимальное значение - 3-5%, а может быть и меньше. Остальные 95% идут на нагревание нити накала и как следствие на нагревание окружающей среды и на излучение не воспринимаемое человеческим глазом. Поэтому совершенствовать данный вид освещения стало нецелесообразным. Появились другие виды освещения - люминесцентные лампы, которые стали широко применяться в последнее время. КПД люминесцентных ламп достигает 7%, а светодиодных до 20%. Использование последних даст экономию электроэнергии прямо сейчас и в процессе эксплуатации за счет большого срока службы - до 50 000 часов (лампа накаливания - 1 000 часов).

Отдельно хотелось бы отметить, что сократить потери электрической энергии в доме можно с помощью . Помимо этого, как мы уже сказали, электроэнергия теряется при ее хищении. Если вы заметили, что , нужно сразу же предпринимать соответствующие меры. Куда звонить за помощью, мы рассказали в соответствующей статье, на которую сослались!

Рассмотренные выше способы уменьшения мощности потребления дают снижение нагрузки на электропроводку в доме и, как следствие, сокращение потерь в электросети. Как вы уже поняли, методы борьбы наиболее широко раскрыты для бытовых потребителей потому что не каждый хозяин квартиры или дома знает о возможных потерях электроэнергии, а поставляющие организации в своем штате держат специально обученных по этой теме работников, которые в состоянии бороться с такими проблемами.

Вот мы и рассмотрели, основные причины потерь электроэнергии в электрических сетях и мероприятия по их снижению. Теперь вы знаете, из-за чего энергия теряется на пути от подстанции к дому и как бороться с этой проблемой!

Введение

Обзор литературы

1.2 Нагрузочные потери электроэнергии

1.3 Потери холостого хода

1.4 Климатические потери электроэнергии

2. Методы расчета потерь электроэнергии

2.1 Методы расчета потерь электроэнергии для различных сетей

2.2 Методы расчета потерь электроэнергии в распределительных сетях 0,38-6-10 кВ

3. Программы расчета потерь электроэнергии в распределительных электрических сетях

3.1 Необходимость расчета технических потерь электроэнергии

3.2 Применение программного обеспечения для расчета потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

4. Нормирование потерь электроэнергии

4.1 Понятие норматива потерь. Методы установления нормативов на практике

4.2 Нормативные характеристики потерь

4.3 Порядок расчета нормативов потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ

5. Пример расчета потерь электроэнергии в распределительных сетях 10 кВ

Заключение

Список литературы

Введение

Электрическая энергия является единственным видом продукции, для перемещения которого от мест производства до мест потребления не используются другие ресурсы. Для этого расходуется часть самой передаваемой электроэнергии, поэтому ее потери неизбежны, задача состоит в определении их экономически обоснованного уровня. Снижение потерь электроэнергии в электрических сетях до этого уровня - одно из важных направлений энергосбережения .

В течение всего периода с 1991 г. по 2003 г. суммарные потери в энергосистемах России росли и в абсолютном значении, и в процентах отпуска электроэнергии в сеть.

Рост потерь энергии в электрических сетях определен действием вполне объективных закономерностей в развитии всей энергетики в целом. Основными из них являются: тенденция к концентрации производства электроэнергии на крупных электростанциях; непрерывный рост нагрузок электрических сетей, связанный с естественным ростом нагрузок потребителей и отставанием темпов прироста пропускной способности сети от темпов прироста потребления электроэнергии и генерирующих мощностей.

В связи с развитием рыночных отношений в стране значимость проблемы потерь электроэнергии существенно возросла. Разработка методов расчета, анализа потерь электроэнергии и выбора экономически обоснованных мероприятий по их снижению ведется во ВНИИЭ уже более 30 лет. Для расчета всех составляющих потерь электроэнергии в сетях всех классов напряжения АО-энерго и в оборудовании сетей и подстанций и их нормативных характеристик разработан программный комплекс, имеющий сертификат соответствия, утвержденный ЦДУ ЕЭС России, Главгосэнергонадзором России и Департаментом электрических сетей РАО "ЕЭС России".

В связи со сложностью расчета потерь и наличием существенных погрешностей, в последнее время особое внимание уделяется разработке методик нормирования потерь электроэнергии.

Методология определения нормативов потерь еще не установилась. Не определены даже принципы нормирования. Мнения о подходе к нормированию лежат в широком диапазоне - от желания иметь установленный твердый норматив в виде процента потерь до контроля за "нормальными" потерями с помощью постоянно проводимых расчетов по схемам сетей с использованием соответствующего программного обеспечения.

По полученным нормам потерь электроэнергии устанавливаются тарифы на электроэнергию. Регулирование тарифов возлагается на государственные регулирующие органы ФЭК и РЭК (федеральную и региональные энергетические комиссии). Энергоснабжающие организации должны обосновывать уровень потерь электроэнергии, который они считают целесообразным включить в тариф, а энергетические комиссии - анализировать эти обоснования и принимать или корректировать их .

В данной работе рассмотрена проблема расчета, анализа и нормирования потерь электроэнергии с современных позиций; изложены теоретические положения расчетов, приведено описание программного обеспечения, реализующего эти положения, и изложен опыт практических расчетов.

Обзор литературы

Проблема расчета потерь электроэнергии волнует энергетиков уже очень долго. В связи с этим, в настоящее время выпускается очень мало книг по данной теме, т.к мало что изменилось в принципиальном устройстве сетей. Но при этом выпускается достаточно большое количество статей, где производится уточнение старых данных и предлагаются новые решения проблем, связанных с расчетом, нормированием и снижением потерь электроэнергии.

Одной из последних книг, выпущенных по данной теме, является книга Железко Ю.С. "Расчет, анализ и нормирование потерь электроэнергии в электрических сетях" . В ней наиболее полно представлена структура потерь электроэнергии, методы анализа потерь и выбор мероприятий по их снижению. Обоснованы методы нормирования потерь. Подробно описано программное обеспечение, реализующее методы расчета потерь.

Ранее этим же автором была выпущена книга "Выбор мероприятий по снижению потерь электроэнергии в электрических сетях: Руководство для практических расчетов" . Здесь наибольшее внимание было уделено методам расчета потерь электроэнергии в различных сетях и обосновано применение того или иного метода в зависимости от типа сети, а также мероприятиям по снижению потерь электроэнергии.

В книге Будзко И.А. и Левина М.С. "Электроснабжение сельскохозяйственных предприятий и населенных пунктов" авторы подробно рассмотрели проблемы электроснабжения в целом, сделав упор на распределительные сети, питающие сельскохозяйственные предприятия и населенные пункты. Также в книге даны рекомендации по организации контроля за потреблением электроэнергии и совершенствованию систем учета.

Авторы Воротницкий В.Э., Железко Ю.С. и Казанцев В.Н. в книге "Потери электроэнергии в электрических сетях энергосистем" рассмотрели подробно общие вопросы, относящиеся к снижению потерь электроэнергии в сетях: методы расчета и прогнозирования потерь в сетях, анализ структуры потерь и расчет их технико-экономической эффективности, планирование потерь и мероприятий по их снижению.

В статье Воротницкого В.Э., Заслонова С.В. и Калинкини М.А. "Программа расчета технических потерь мощности и электроэнергии в распределительных сетях 6 - 10 кВ" подробно описана программа для расчета технических потерь электроэнергии РТП 3.1 Ее главным достоинством является простота в использовании и удобный для анализа вывод конечных результатов, что существенно сокращает трудозатраты персонала на проведение расчета.

Статья Железко Ю.С. "Принципы нормирования потерь электроэнергии в электрических сетях и программное обеспечение расчетов" посвящена актуальной проблеме нормирования потерь электроэнергии. Автор делает упор на целенаправленное снижение потерь до экономически обоснованного уровня, что не обеспечивает существующая практика нормирования. Также в статье выносится предложение использовать нормативные характеристики потерь, разработанные на основе детальных схемотехнических расчетов сетей всех классов напряжений. При этом расчет может производится при использовании программного обеспечения.

Целью другой статьи этого же автора под названием "Оценка потерь электроэнергии, обусловленных инструментальными погрешностями измерения" не является уточнение методики определения погрешностей конкретных измерительных приборов на основе проверки их параметров. Автором в статье проведена оценка результирующих погрешностей системы учета поступления и отпуска электроэнергии из сети энергоснабжающей организации, включающей в себя сотни и тысячи приборов. Особое внимание уделено систематической погрешности, которая в настоящее время оказывается существенной составляющей структуры потерь.

В статье Галанова В.П., Галанова В.В. "Влияние качества электроэнергии на уровень ее потерь в сетях" уделено внимание актуальной проблеме качества электроэнергии, что оказывает существенное влияние на потери электроэнергии в сетях.

Статья Воротницкого В.Э., Загорского Я.Т. и Апряткина В.Н. "Расчет, нормирование и снижение потерь электроэнергии в городских электрических сетях" посвящена уточнению существующих методов расчета потерь электроэнергии, нормированию потерь в современных условиях, а также новым методам снижения потерь.

В статье Овчинникова А. "Потери электроэнергии в распределительных сетях 0,38 - 6 (10) кВ" делается упор на получение достоверной информации о параметрах работы элементов сетевого хозяйства, и прежде всего о загрузке силовых трансформаторов. Данная информация, по мнения автора, поможет существенно снизить потери электроэнергии в сетях 0,38 - 6 - 10 кВ.

1. Структура потерь электроэнергии в электрических сетях. Технические потери электроэнергии

1.1 Структура потерь электроэнергии в электрических сетях

При передаче электрической энергии в каждом элементе электрической сети возникают потери. Для изучения составляющих потерь в различных элементах сети и оценки необходимости проведения того или иного мероприятия, направленного на снижение потерь, выполняется анализ структуры потерь электроэнергии.

Фактические (отчетные) потери электроэнергии ΔW Отч определяют как разность электроэнергии, поступившей в сеть, и электроэнергии, отпущенной из сети потребителям. Эти потери включают в себя составляющие различной природы: потери в элементах сети, имеющие чисто физический характер, расход электроэнергии на работу оборудования, установленного на подстанциях и обеспечивающего передачу электроэнергии, погрешности фиксации электроэнергии приборами ее учета и, наконец, хищения электроэнергии, неоплату или неполную оплату показаний счетчиков и т.п.



Поделиться: